IMPACT OF RENEWABLE DIESEL ON OLEOCHEMICALS

Racemics Meeting 28 April 2022

US LIQUID TRANSPORTATION FUEL USAGE 2019

- Gasoline 130 billion gallons
- Diesel 47 billion gallons
- Aviation 18 billion gallons
- Total of Roughly 190 billion gallons annual use

EIA WEBSITE

RENEWABLE LIQUID TRANSPORTATION FUELS

Ethanol

- Biodiesel
- **Renewable Diesel**

Represent about 10% of US liquid transportation fuel

RENEWABLE LIQUID TRANSPORTATION FUELS ETHANOL

	Ethanol			Finished Gasoline	
	Production	Blending	Exports	Consumption	Average Etha Content
	Million Gallons				%
2021	15,015	13,937	1,252	134,829	10.34%
2020	13,941	12,681	1,317	123,733	10.25%
2019	15,778	14,552	1,467	142,712	10.20%
2018	16,091	14,420	1,710	143,013	10.08%
2017	15,936	14,485	1,390	142,976	10.13%

Source: U.S. Energy Information Administration; numbers are subject to EIA revision

RENEWABLE LIQUID TRANSPORTATION FUELS ETHANOL

- Corn is primary feedstock in US
- Flat production at ~15 billion gallons per year
- \$ per gallon biofuel subsidy, but difficult to calculate total credits
- Primary use for gasoline blending E10, E15, E85
- Generates 4.5 million tons of distillers grain as by-product each year

RENEWABLE LIQUID TRANSPORTATION FUELS

BIODIESEL

- Made from Methanol and Triglycerides (animal fats or vegetable oils)
- Flat production ~2.3 billion gallons per year; use limited by saturate levels
- **\$ per gallon blender credit plus RIN values**
- Majority goes to California to meet Low Carbon Fuel Standard
- Generates 1.4 billion pounds crude glycerin per year \checkmark

Renewable identification numbers (RINs) are credits used for compliance, and are the "currency" of the RFS program.

•Renewable fuel producers generate RINs

- •Market participants trade RINs
- •Obligated parties obtain and then ultimately retire RINs for compliance **RINs can be traded in two forms:**
- batch. Purchase only the RIN.

Examples of typical RIN transactions include:

- •Generate when a fuel is produced, a RIN is generated
- •Buy when an assigned/separated RIN is bought/traded by a buyer from a seller
- •Sell when an assigned/separated RIN is sold/traded by a seller to a buyer
- •Retire when a RIN is used to demonstrate compliance, or required to be retired for other purposes

•Assigned RINs - directly associated with a batch of fuel and that travel with that batch of fuel from party to party. Purchasers obtain both the renewable fuel and RINs together. •Separated RINs - formerly assigned with a batch of fuel, but are no longer assigned to a

•Separate - when a RIN is separated from the fuel to which it was originally assigned

RENEWABLE LIQUID TRANSPORTATION FUELS

RENEWABLE DIESEL

- RD is growing with US capacity doubling annually through 2024
- Feedstock more flexible than biodiesel most any triglyceride will work
- \$ per gallon blender credit for ~2 billion gallons plus RIN values (\$0.40 - \$1.10 per gallon)
- Used cooking oil and tallow have most favorable carbon intensity scores \checkmark
- Does not generate much in way of byproducts relative to biodiesel

RENEWABLE LIQUID TRANSPORTATION FUELS

California LCFS Carbon Intensity Scores for Renewable Diesel

UCO

Distillers Corn Oi

Tallow

Soybean Oil

EPA is currently working on RIN for Canola Oil

	CI Score
	20.8
il	32.8
	36.3
	55.2

Annual US Production in million metric tons 2010 - 2024

Biodiesel
Renewable Diesel

Existing and Expected RD Capacity (billion gallons)

RENEWABLE DIESEL

SELECTED MAJOR PROJECTS

- Tyson/Jacob Stearn & Sons JV
- Heartwell Renewables Cargill/Love's JV

- Diamond Green Valero/Darling JV to reach 1.2 billion gallons in 2023
- Neste has 1.5 billion gallons globally buying US feedstock traders/suppliers
- Marathon/ADM soy based venture for up to 0.7 billion gallons

RENEWABLE DIESEL PROCESS

SUSTAINABLE FEEDSTOCKS FOR RENEWABLE DIESEL

Typically, renewable or recyclable Animal fats or Plant oils

Agriculture - Soy, Corn, Canola, Palm and Rape Seed Oils

Recycled products - Recycled cooking oil, byproducts of animal production, such as beef tallow.

Beef fat, tallow

SOYBEAN OIL

- One bushel of soybeans produces 11 pounds of oil and 48 pounds of meal
- 4.1 billion bushels produced in US in 2021. About 40% is exported.
- If all 4.1 billion bushels crushed, it would yield 6.1 billion gallons of soybean oil
- If no exports, another ~2 billion gallons of oil could be generated

What to do with the extra soybean meal??

ECONOMICS – FEEDSTOCK SUPPLY

 \checkmark

- - oil approaching \$1.70 per pound.
 - than doubled in cost in the past year alone.
 - Europe and in some California circles.

Tallow supply is very flat and cannot be readily increased. It grows about 2% per year representing a total availability of 0.8 billion gallons per year.

Soybean oil can possibly add 2 billion gallons if crushing capacity in place.

Refined vegetable oils are mostly > \$1 per pound (or \$7 per gallon). Corn

UCO and animal fats have a low CI score which makes them most attractive in CA and OR markets. Tallow and Yellow Grease have more

23 billion gallons of palm oil were produced in 2021, but it is unpopular in

CRUDE SOY OIL AND TALLOW PRICES

Edible Tallow and Soy Oil March 2020 - March 2022

--ET --Crude Soy

IMPACT OF RENEWABLE DIESEL ON OLEOCHEMICALS

- Obmestic production of stearics and oleics will continue to rise in price as the scarcity of feedstocks intensifies. This will affect anything made from fatty acids or fatty alcohols.
- Given the magnitude of import supply chain limitations, there is limited potential from additional supply from abroad.
- Unless petroleum diesel surpasses the ~\$9 per gallon level, subsidies and renewable volume obligations will need to cover the cost gap.

REFERENCES

US EPA website

USDA website

EIA website

Render Magazine – February 2022

North American Renderers Association

United Soybean Board

California Air Resources Board

DISCLAIMER

Chemol Co, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only for discussion purposes as related to the presentation on 28 April 2022. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose.

Chemol Co, Inc. makes no representations or warranties, either express or implied, including without limitation any warranties of merchantability, fitness for a particular purpose with respect to the information set forth herein or the materials to which the information refers. Accordingly, Chemol Co, Inc. will not be responsible for damages resulting from use of or reliance upon this information.

THANK YOU